

Julius-Maximilians-Universität Würzburg Institut für Mathematik

Prof. Dr. H. Pabel Christian Lageman, Martin Lamprecht, Ralf Winkler

Würzburg, den 12. Juni 2006

5. Übung zur Analysis II

Sommersemester 2006 Lösungshinweise

21.) a,b.) Es ist

$$\operatorname{Arctan}'(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{k=0}^{\infty} (-x^2)^k = \sum_{k=0}^{\infty} (-1)^k x^{2k}.$$

Diese Reihe konvergiert genau für $|x^2| < 1$, besitzt also insbesondere den Konvergenzradius R = 1. Gliedweises Integrieren liefert

$$Arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} + c.$$

Wegen $0 = \operatorname{Arctan} 0 \stackrel{!}{=} 0 + c$ folgt c = 0. Nach Satz 4.3.6 und 4.3.8 besitzt diese Reihe ebenfalls den Konvergenzradius R = 1. Setzen wir $x = \pm 1$ in die Reihe ein, so erhalten wir die Reihen

$$\pm \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$
,

welche nach dem Leibniz-Kriterium konvergieren.

Es ist

Artanh'(x) =
$$\frac{1}{1-x^2}$$
 = $\sum_{k=0}^{\infty} (x^2)^k$ = $\sum_{k=0}^{\infty} x^{2k}$.

Ihr Konvergenzradius ist wieder R = 1 (geom. Reihe). Gliedweises Integrieren liefert

Artanh(x) =
$$\sum_{k=0}^{\infty} \frac{1}{2k+1} x^{2k+1}$$
,

da sich die Integrationskonstante wie oben zu c=0 berechnet. Für den Konvergenzradius ergibt sich (Argumentation analog zu oben) ebenfalls R=1. Für $x=\pm 1$ haben wir die Reihen

$$\pm \sum_{k=0}^{\infty} \frac{1}{2k+1} \,.$$

Diese divergieren nach dem Minorantenkriterium. Beispielsweise für x=1 ergibt sich

$$\sum_{k=0}^{\infty} \frac{1}{2k+1} \, = \, \sum_{k=1}^{\infty} \frac{1}{2k-1} \, > \, \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} \, = \, \infty \, .$$

Es ist

$$\operatorname{Arcsin}'(x) = (1 - x^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} {\binom{-\frac{1}{2}}{k}} (-x^2)^k \stackrel{A.17}{=} \sum_{k=0}^{\infty} \frac{1}{2^{2k}} {\binom{2k}{k}} x^{2k}.$$

Aus der Vorlesung ist bekannt, dass für den Konvergenzradius dieser Reihe (wie auch der integrierten Reihe) R=1 gilt. Es ist ferner durch gliedweises Integrieren

$$\sum_{k=0}^{\infty} \frac{1}{2^{2k}} \frac{1}{2k+1} \binom{2k}{k} x^{2k+1} + c,$$

wobei sich wegen $0 = Arcsin(0) \stackrel{!}{=} 0 + c$ wieder c = 0 ergibt. Für $x = \pm 1$ erhalten wir die Reihen

$$\pm \sum_{k=0}^{\infty} \frac{1}{2^{2k}} \frac{1}{2k+1} {2k \choose k}.$$

Es genügt, die Reihe mit "+" auf Konvergenz zu untersuchen. Zum einen ist die Folge der Partialsummen

$$s_n := \sum_{k=0}^n \frac{1}{2^{2k}} \frac{1}{2k+1} \binom{2k}{k} \qquad (n \in \mathbb{N}_0)$$

(streng) monoton steigend. Für alle $n \in \mathbb{N}_0$ ist zudem

$$\sum_{k=0}^{n} \frac{1}{2^{2k}} \frac{1}{2k+1} \binom{2k}{k} = \lim_{x \to 1} \sum_{k=0}^{n} \frac{1}{2^{2k}} \frac{1}{2k+1} \binom{2k}{k} x^{2k+1}$$

$$\stackrel{x>0}{\leq} \lim_{x \to 1} \sum_{k=0}^{\infty} \frac{1}{2^{2k}} \frac{1}{2k+1} \binom{2k}{k} x^{2k+1} = \lim_{x \to 1} \operatorname{Arcsin}(x) = \operatorname{Arcsin} 1.$$

Nach dem Monotoniekriterium für Folgen (Satz 2.2.6) ist somit die Reihe konvergent. Es ist

$$\operatorname{Arsinh}'(x) = (1+x^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} {\binom{-\frac{1}{2}}{k}} (x^2)^k \stackrel{\text{aus}}{=} \sum_{k=0}^{\text{A.17}} \frac{(-1)^k}{2^{2k}} {\binom{2k}{k}} x^{2k} \,.$$

Aus der Vorlesung ist bekannt, dass für den Konvergenzradius dieser Reihe (wie auch der integrierten Reihe) R=1 gilt. Es ist ferner durch gliedweises Integrieren

$$\sum_{k=0}^{\infty} \frac{1}{2^{2k}} \frac{(-1)^k}{2k+1} {2k \choose k} x^{2k+1} + c$$

wobei sich wegen $0 = \text{Arsinh}0 \stackrel{!}{=} 0 + c$ wieder c = 0 ergibt. Für $x = \pm 1$ erhalten wir die Reihen

$$\pm \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k}} \frac{1}{2k+1} \binom{2k}{k} \, .$$

Diese besitzen einen Grenzwert, da sie (wie bei der Arcsin-Reihe) gezeigt, sogar absolut konvergieren.

c.) Konvergiert die Reihe wie beispielsweise im Falle von Arctan und Arcsin auch auf dem Rand des Konvergenzintervalls, so ist sie als Funktion von x nach dem Abelschen Grenzwertsatz dort auch stetig. Somit gilt

$$\frac{\pi}{4} = \operatorname{Arctan}(1) = \lim_{x \to 1} \operatorname{Arctan}(x) = \lim_{x \to 1} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}.$$

und auch

$$\frac{\pi}{2} = \operatorname{Arcsin}(1) = \lim_{x \to 1} \operatorname{Arcsin}(x) = \lim_{x \to 1} \sum_{k=0}^{\infty} \frac{1}{2k+1} \frac{1}{2^{2k}} \binom{2k}{k} x^{2k+1} = \sum_{k=0}^{\infty} \frac{1}{2k+1} \frac{1}{2^{2k}} \binom{2k}{k}.$$

22.) a.) Es ist mit wiederholter partieller Integration

$$\int x^3 \sin x \, dx = \int x^3 (-\cos x)' \, dx = \int 3x^2 \cos x \, dx - x^3 \cos x$$

$$= \int 3x^2 (\sin x)' \, dx - x^3 \cos x = -\int 6x \sin x \, dx + 3x^2 \sin x - x^3 \cos x$$

$$= \int 6x (\cos x)' \, dx + 3x^2 \sin x - x^3 \cos x$$

$$= -\int 6 \cos x \, dx + 6x \cos x + 3x^2 \sin x - x^3 \cos x$$

$$= \sin x (3x^2 - 6) + \cos x (6x - x^3) + c.$$

b.) Es ist $\phi: \mathbb{R}^+ \to \mathbb{R}$, $\phi(t) = \log t$ eine differenzierbare Bijektion mit $\forall_{t \in \mathbb{R}^+} \phi'(t) = \frac{1}{t} \neq 0$. Ferner ist

$$t \mapsto f(\phi(t)) \cdot \phi'(t) = \frac{t+1}{t+\frac{1}{t}} \cdot \frac{1}{t} = \frac{t+1}{t^2+1}$$

als rationale Funktion unbestimmt integrierbar. Nach Satz 4.3.4b.) ist dann für alle $x \in \mathbb{R}$

$$\int \frac{e^x + 1}{e^x + e^{-x}} = \left| \int \frac{t+1}{t^2 + 1} dt \right|_{t=e^x}.$$

Wegen

$$\int \frac{t+1}{t^2+1} dt = \frac{1}{2} \int \frac{2t}{t^2+1} dt + \int \frac{1}{t^2+1} dt = \frac{1}{2} \log(t^2+1) + \operatorname{Arctan}(t) + c$$

ist

$$\int \frac{e^x + 1}{e^x + e^{-x}} dx = \frac{1}{2} \log(e^{2x} + 1) + \operatorname{Arctan}(e^x) + c.$$

c.) Mit Hilfe einer Polynomdivision erkennen wir

$$\frac{x^5 + x^4 + 2x^2 + 5}{(x+1)^2(x^2 + x + 1)} = \frac{x^5 + x^4 + 2x^2 + 5}{x^4 + 3x^3 + 4x^2 + 3x + 1} = x - 2 + \frac{2x^3 + 7x^2 + 5x + 7}{(x+1)^2(x^2 + x + 1)}.$$
 (1)

Wir multiplizieren den Ansatz

$$\frac{2x^3 + 7x^2 + 5x + 7}{(x+1)^2(x^2 + x + 1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx + D}{x^2 + x + 1}$$

mit $(x+1)^2(x^2+x+1)$ und erhalten

$$2x^{3} + 7x^{2} + 5x + 7 = A(x+1)(x^{2} + x + 1) + B(x^{2} + x + 1) + (Cx + D)(x+1)^{2}$$

Ausmultiplizieren und Sortieren nach Potenzen von x führt nach Koeffizientenvergleich auf das lineare Gleichungssystem

$$A + C = 2$$

$$2A + B + 2C + D = 7$$

$$2A + B + C + 2D = 5$$

$$A + B + D = 7$$

welches die eindeutige Lösung $A=4,\,B=7,\,C=-2,\,D=-4$ besitzt. Somit berechnen wir das unbestimmte Integral von (1) zu

$$\frac{1}{2}x^2 - 2x + 4\int \frac{1}{x+1} dx + 7\int \frac{1}{(x+1)^2} dx - \int \frac{2x+4}{x^2+x+1} dx.$$

Im Einzelnen erhalten wir mit Hilfe der aus der Vorlesung bekannten Stammfunktionen:

$$4\int \frac{1}{x+1} dx = 4\log|x+1| + c$$

$$7\int \frac{1}{(x+1)^2} dx = -\frac{7}{x+1} + c$$

$$-\int \frac{2x+4}{x^2+x+1} dx = -\int \frac{2x+1}{x^2+x+1} dx - 3\int \frac{1}{x^2+x+1} dx$$

$$= -\log|x^2+x+1| - 2\sqrt{3}\operatorname{Arctan} \frac{2x+1}{\sqrt{3}} + c.$$

Damit erhalten wir als unbestimmtes Integral von (1) die Funktionen

$$\frac{1}{2}x^2 - 2x + 4\log|x+1| - \frac{7}{x+1} - \log|x^2 + x + 1| - 2\sqrt{3}\operatorname{Arctan}\frac{2x+1}{\sqrt{3}} + c.$$

23.) a.) Es sei $F:[a,b]\to\mathbb{R}$ eine Stammfunktion von f. Dann ist für alle $x\in I$

$$S(x) = F(h(x)) - F(g(x)),$$

also wegen F' = f:

$$S'(x) = f(h(x)) \cdot h'(x) - f(g(x))g'(x)$$
.

 b_1 .) Für |x| < 1 besitzt die Funktion $x \mapsto \log(1 + x^2)$ eine Potenzreihendarstellung und nach Satz 4.3.6 somit auch eine Stammfunktion F auf |x| < 1. Diese ist differenzierbar und folglich auch stetig, insbesondere stetig in $x_0 = 0$, so dass

$$\lim_{x \to 0} \int_{-2x^2}^{2x^2} \log(1+t^2) dt = \lim_{x \to 0} F(2x^2) - F(-2x^2) = 0.$$

Zusammen mit a.) und dem Satz von de l'Hospital gilt nun

$$\lim_{x \to 0} \frac{\int_{-2x^2}^{2x^2} \log(1+t^2) dt}{x^6} = \lim_{x \to 0} \frac{\log(1+4x^4) 4x - \log(1+4x^4) (-4x)}{6x^5} = \lim_{x \to 0} \frac{8x \log(1+4x^4)}{6x^5}$$
$$= \lim_{x \to 0} \frac{8x(4x^4 + o(x^7))}{6x^5} = \frac{16}{3}.$$

 b_2 .) Auf $\mathbb{R}\setminus\{0\}$ besitzt die Funktion $x\mapsto \frac{\sin x}{x^3}$ eine Stammfunktion, denn

$$\frac{\sin x}{x^3} = \frac{1}{x^3} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k-2}}{(2k+1)!}$$

$$= \frac{1}{x^2} + \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k-2}}{(2k+1)!}$$
besitzt Stammfkt. $-\frac{1}{x} + c$
Petaggeiha mit Kony radius $R = \infty$

Insbesondere bilden für jedes Intervall I, welches die Null nicht enthält, die Funktionen g(x)=x und h(x)=2x auf ein Intervall ab, auf welchem $t\mapsto \frac{\sin t}{t^3}$ eine Stammfunktion besitzt. Jede Stammfunktion der obigen Potenzreihe ist eine differenzierbare und insbesondere stetige Funktion auf ganz \mathbb{R} . Für eine solche Funktion F ist also $\lim_{x\to 0} F(2x) - F(x) = 0$. Zusammen also ist

$$\lim_{x \to 0} \int_{x}^{2x} \frac{\sin t}{t^{3}} dt = \lim_{x \to 0} \left(-\frac{1}{2x} + F(2x) + \frac{1}{x} - F(x) \right) = \lim_{x \to 0} \frac{1}{2x} = \infty.$$

Wir können somit wieder de l'Hospital anwenden und erhalten zusammen mit a.):

$$\lim_{x \to 0} x \int_{x}^{2x} \frac{\sin t}{t^{3}} dt = \lim_{x \to 0} \frac{\int_{x}^{2x} \frac{\sin t}{t^{3}} dt}{\frac{1}{x}} = \lim_{x \to 0} \frac{2\frac{\sin 2x}{8x^{3}} - \frac{\sin x}{x^{3}}}{-\frac{1}{x^{2}}}$$

$$= \lim_{x \to 0} \frac{\sin x - \frac{1}{4}\sin 2x}{x} = \lim_{x \to 0} (\cos x - \frac{1}{2}\cos 2x) = \frac{1}{2}$$

24.) Für $x \in \mathbb{R}$ ist

$$p'(x) = 4x^3 - 6x^2 + 5$$
, $p''(x) = 12x^2 - 12x$, $p'''(x) = 24x - 12$, $p^{(4)}(x) = 24$, $p^{(5)}(x) = 0$.

und daher

$$p'(1) \, = \, 3, \quad p''(1) \, = \, 0, \quad p'''(1) \, = \, 12, \quad p^{(4)}(1) \, = \, 24, \quad p^{(5)}(1) \, = \, 0 \, ,$$

so dass sich $T_4|_1$ berechnet zu

$$T_4|_1(x) = \sum_{k=0}^4 \frac{1}{k!} p^{(k)}(1)(x-1)^k = 3 + 3(x-1) + 2(x-1)^3 + (x-1)^4.$$

Dass dieses Polynom mit p übereinstimmt, sieht man beispielsweise mit dem Restglied von Lagrange, welches wegen $f^{(5)} \equiv 0$ für alle $x \in \mathbb{R}$ verschwindet. Ohne dieses Hilfsmittel lässt sich die Gleichheit durch Ausmultiplizieren zeigen. Es ist nämlich

$$3+3(x-1)+2(x-1)^3+(x-1)^4=3+3x-3+2(1x^3-3x^2+3x-1)+(1x^4-4x^3+6x^2-4x+1)=p(x).$$

25.) Für $k \leq p$ ist mit Satz 4.1.4b.)

$$f^{(k)}(x) = q^{(k)}(x) + \sum_{j=0}^{k} {k \choose j} \frac{d^j}{dx^j} (x - x_0)^p g^{(k-j)}(x)$$
$$= q^{(k)}(x) + \sum_{j=0}^{k} {k \choose j} p \cdot \dots \cdot (p-j+1) (x - x_0)^{p-j} g^{(k-j)}(x),$$

also insbesondere $f^{(k)}(x_0) = q^{(k)}(x_0)$ für k < p und auch

$$f^{(p)}(x_0) = q^{(p)}(x_0) + p! \cdot g(x_0) = q^{(p)}(x_0).$$

Wegen $f^{(k)}(x_0) = \left. T_p \right|_{x_0}^{(k)}(x_0)$ für alle $k=1,\dots,p$ gilt somit für

$$s(x) := T_p|_{x_0} (x + x_0) - q(x + x_0),$$

dass

$$s^{(k)}(0) = 0$$
 für alle $k = 0, \dots, p$. (2)

Dabei ist s mit

$$s(x) = a_0 + a_1 x + \ldots + a_p x^p$$

ein Polynom vom Grad $\leq p,$ und es berechnet sich a_t (1 $\leq t \leq p)$ mit (2) zu

$$a_t = \frac{s^{(t)}(0)}{t!} = 0.$$

Folglich ist s(x)=0 für alle $x\in\mathbb{R}$ und damit auch $\left.T_{p}\right|_{x_{0}}(x)=q(x)$ für alle $x\in\mathbb{R}.$