

Julius-Maximilians-Universität Würzburg Institut für Mathematik

Prof. Dr. H. Pabel Christian Lageman, Martin Lamprecht, Ralf Winkler

Würzburg, den 1. Juni 2006

4. Übung zur Analysis II

Sommersemester 2006 Lösungshinweise

19.) b.) Für den Konvergenzradius R gilt

$$R = \frac{1}{\lim_{k \to \infty} \frac{((k+1)^2(k+2)+1)k}{(k+1)(k^2(k+1)+1)}} = 1.$$

Für $n \in \mathbb{N}$ ist

$$\sum_{k=1}^{n} \frac{k^2(k+1)+1}{k} x^k = \sum_{k=1}^{n} \frac{x^k}{k} + \sum_{k=1}^{n} k^2 x^k + \sum_{k=1}^{n} k x^k.$$
 (1)

Wir zeigen, dass für die drei einzelnen Reihen und |x|<1 der Grenzwert für $n\to\infty$ existiert. Unter diesen Umständen dürfen wir dann die Einzelergebnisse addieren.

Die erste Reihe besitzt den Konvergenzradius $R=\frac{1}{\lim_{k\to\infty}\frac{k}{k+1}}=1$. Durch gliedweises Differenzieren ergibt sich für |x|<1:

$$\left(\sum_{k=1}^{\infty} \frac{x^k}{k}\right)' = \sum_{k=1}^{\infty} x^{k-1} = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x},$$

also

$$\sum_{k=1}^{\infty} \frac{x^k}{k} = \int \frac{1}{1-x} dx = -\ln|1-x| + c = -\ln(1-x) + c.$$

Wegen

$$\sum_{k=1}^{\infty} \frac{x^k}{k} \bigg|_{x=0} = 0 \stackrel{!}{=} -\ln 1 + c$$

ist c = 0 und

$$\sum_{k=1}^{\infty} \frac{x^k}{k} = -\ln(1-x).$$

Für die zweite Reihe gilt nach Vorlesung

$$\sum_{k=1}^{\infty} k^2 x^k = \frac{2}{(1-x)^3} - \frac{3}{(1-x)^2} + \frac{1}{(1-x)}.$$

Die dritte Reihe besitzt ebenfalls den Konvergenzradius $R=\frac{1}{\lim_{k\to\infty}\frac{k+1}{k}}=1$. Es gilt mit der geometrischen Reihe für $x\neq 0$

$$\left(\frac{1}{1-x}\right)' = \frac{d}{dx} \sum_{k=1}^{\infty} x^k = \sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{x} \sum_{k=1}^{\infty} kx^k,$$

also

$$\sum_{k=1}^{\infty} kx^k = x \left(\frac{1}{1-x}\right)' = \frac{x}{(1-x)^2}.$$

Für x=0 ist diese Identität ebenfalls richtig. Eine Addition der drei Reihen ergibt somit

$$\sum_{k=1}^{\infty} \frac{k^2(k+1)+1}{k} x^k = -\ln(1-x) + \frac{x^2+x}{(1-x)^3} + \frac{x}{(1-x)^2} = -\ln(1-x) + \frac{2x}{(1-x)^3}.$$

20.) Zu $u \in [0,1]$ gibt es nach dem MWS ein $\xi \in]0,1[$ mit $\frac{\cos(0)-\cos(u)}{0-u} = -\sin\xi$ bzw.

$$1 - \cos u = \sin \xi \cdot u \le C \cdot u \quad \text{mit } C = \sin 1 < 1. \tag{2}$$

Damit können wir induktiv zeigen, dass

$$\forall_{k \in \mathbb{N}_0} \, \forall_{x \in \mathbb{R}} \quad 0 \le f_k(x) \le C^k \,. \tag{3}$$

Für k=0 ist dies klar. Falls (3) für ein $k\in\mathbb{N}_0$ gilt, so ist auch

$$f_{k+1}(x) = 1 - \cos(f_k(x)) \ge 0, \quad f_{k+1}(x) = 1 - \cos(\underbrace{f_k(x)}_{0 \le f_k(x) \le 1 \text{ nach (IA)}}) \le 1$$

und

$$f_{k+1}(x) = 1 - \cos(f_k(x)) \stackrel{(2)}{\leq} C f_k(x) \leq C^{k+1}$$
.

Damit ist für $n \in \mathbb{N}$, alle $x \in \mathbb{R}$ und vorgegebenes $\epsilon > 0$

$$\left| s(x) - \sum_{k=0}^{n} f_k(x) \right| = \left| \sum_{k=n+1}^{\infty} f_k(x) \right| = \sum_{k=n+1}^{\infty} f_k(x) \le \sum_{k=n+1}^{\infty} C^k = C^{n+1} \sum_{j=0}^{\infty} C^j = \frac{1}{1-C} C^{n+1} < \epsilon$$

für n groß genug, d.h. die Reihe konvergiert gleichmäßig auf \mathbb{R} . Wir zeigen, dass auch die formal differenzierte Reihe $\sum_{k=0}^{\infty} f_k'(x)$ auf \mathbb{R} gleichmäßig konvergiert. (Die Differenzierbarkeit der f_k folgt dabei leicht induktiv.) Wir weisen dazu wieder induktiv nach, dass für $k \in \mathbb{N}_0$ und $x \in \mathbb{R}$ gilt:

$$|f_k'(x)| \le C^k |f_0'(x)|$$

mit der Konstanten C aus (2). Für k=0 ist dies klar. Falls dies für $k\in\mathbb{N}_0$ gilt, so ist diese Abschätzung auch für k+1 richtig, denn

$$|f'_{k+1}(x)| = |\sin(f_k(x))| \cdot |f'_k(x)| \le \sin 1 \cdot |f'_k(x)| \le C \cdot C^k |f'_0(x)| = C^{k+1} |f'_0(x)|.$$

Damit gilt für den n.ten Reihenrest für alle $x \in \mathbb{R}$ und vorgegebenes $\epsilon > 0$:

$$r_n(x) = \sum_{k=n}^{\infty} f_k'(x) \le \sum_{k=n}^{\infty} |f_k'(x)| \le |f_0'(x)| \cdot \sum_{k=n}^{\infty} C^k = |f_0'(x)| C^n \sum_{k=0}^{\infty} C^k = |f_0'(x)| C^n \frac{1}{1-C}.$$

Da $f_0'(x) = \frac{-2x}{(1+x^2)^2}$ für alle $x \in \mathbb{R}$ ist $\lim_{|x| \to \infty} f_0'(x) = 0$ und f_0' besitzt folglich ein Maximum M auf \mathbb{R} . Daher ist

$$\forall_{x \in \mathbb{R}} : r_n(x) \le \frac{M}{1 - C}C^n < \epsilon$$

für n groß genug und die formal differenzierte Reihe konvergiert gleichmäßig gegen eine Grenzfunktion. Nach Satz 4.2.7 über die Vertauschung von Grenzwert und Ableitung ist somit s differenzierbar auf $\mathbb R$.